Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning.

نویسندگان

  • Jaegeon Ryu
  • Sinho Choi
  • Taesoo Bok
  • Soojin Park
چکیده

We demonstrate a simple but straightforward process for the synthesis of nanotube-type Si-based multicomponents by combining a coaxial electrospinning technique and subsequent metallothermic reduction reaction. Si-based multicomponent anodes consisting of Si, alumina and titanium silicide show several advantages for high-performance lithium-ion batteries. Alumina and titanium silicide, which have high mechanical properties, act as an effective buffer layer for the large volume change of Si, resulting in outstanding volume suppression behavior (volume expansion of only 14%). Moreover, electrically conductive titanium silicide layers located at the inner and outer layers of a Si nanotube exhibit a high initial coulombic efficiency of 88.5% and an extraordinary rate capability. Nanotubular structured Si-based multicomponents with mechanically and electrically improved components can be used as a promising alternative to conventional graphite anode materials. This synthetic route can be extended to other high capacity lithium-ion battery anode materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon scaffold structured silicon anodes for lithium-ion batteries

A unique methodology of fabricating Si anodes for lithium-ion batteries with porous carbon scaffold structure is reported. Such carbon scaffold Si anodes are fabricated via carbonization of porous Si-PVdF precursors which are directly deposited on the current collector. Unlike the conventional slurry casting method, binder and conductive additives are not used in the preparation of the carbon s...

متن کامل

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries.

Nanostructured CuO anode materials with controllable morphologies have been successfully synthesized via a facile and environmentally friendly approach in the absence of any toxic surfactants or templates. In particular, leaf-like CuO, oatmeal-like CuO, and hollow-spherical CuO were obtained by changing the ligand agents. The structures and electrochemical performance of these as-prepared CuO w...

متن کامل

Free-standing Ag/C coaxial hybrid electrodes as anodes for Li-ion batteries.

Free-standing coaxially structured Ag/carbon hybrid electrodes were prepared as potential anodes for micro-Li-ion batteries, which show excellent electrochemical performance, being essentially due to the beneficial effect of the unique structure, i.e. the Ag-core enhances the flexibility and electrochemical kinetics, while the carbon shell buffers volumetric change during cycling.

متن کامل

Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries

Electrospun nanofiber membranes have been extensively studied as separators in Li-ion batteries due to their large porosity, unique pore structure, and high electrolyte uptake. However, the electrospinning process has some serious drawbacks, such as low spinning rate and high production cost. The centrifugal spinning technique can be used as a fast, cost-effective and safe technique to fabricat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 14  شماره 

صفحات  -

تاریخ انتشار 2015